Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Front Pharmacol ; 14: 1191608, 2023.
Article in English | MEDLINE | ID: covidwho-20245304

ABSTRACT

Background: Azvudine (FNC) is a promising treatment candidate for managing coronavirus disease 2019 (COVID-19). However, drug interactions with azvudine have been poorly studied, especially with no reported cases of azvudine with anticoagulants such as warfarin and rivaroxaban. Case summary: The patient was diagnosed with lower limb venous thrombosis and took warfarin regularly. The international normalized ratio (INR) was stable (2.0-3.0). However, the INR increased to 7.52 after administering azvudine. The patient had no other factors justifying this change. This increase in INR occurred again with the administration of azvudine in combination with rivaroxaban, and the INR increased to 18.91. After azvudine administration was stopped, the INR did not increase when rivaroxaban was used alone. Conclusion: Azvudine, warfarin, and rivaroxaban might have previously unidentified drug interactions that increased the INR. Therefore, the INR must be closely monitored when they are concomitantly administered in COVID-19 patients.

2.
United European Gastroenterol J ; 11(5): 431-447, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20230969

ABSTRACT

BACKGROUND: Immunocompromised populations, such as organ transplant recipients and patients with inflammatory bowel disease (IBD) receiving immunosuppressive/immunomodulatory medications, may be more susceptible to coronavirus infections. However, little is known about how immunosuppressants affect coronavirus replication and their combinational effects with antiviral drugs. OBJECTIVE: This study aims to profile the effects of immunosuppressants and the combination of immunosuppressants with oral antiviral drugs molnupiravir and nirmatrelvir on pan-coronavirus infection in cell and human airway organoids (hAOs) culture models. METHODS: Different coronaviruses (including wild type, delta and omicron variants of SARS-CoV-2, and NL63, 229E and OC43 seasonal coronaviruses) were used in lung cell lines and hAOs models. The effects of immunosuppressants were tested. RESULTS: Dexamethasone and 5-aminosalicylic acid moderately stimulated the replication of different coronaviruses. Mycophenolic acid (MPA), 6-thioguanine (6-TG), tofacitinib and filgotinib treatment dose-dependently inhibited viral replication of all tested coronaviruses in both cell lines and hAOs. The half maximum effective concentration (EC50) of tofacitinib against SARS-CoV-2 was 0.62 µM and the half maximum cytotoxic concentration (CC50) was above 30 µM, which resulted in a selective index (SI) of about 50. The anti-coronavirus effect of the JAK inhibitors tofacitinib and filgotinib is dependent on the inhibition of STAT3 phosphorylation. Combinations of MPA, 6-TG, tofacitinib, and filgotinib with the oral antiviral drugs molnupiravir or nirmatrelvir exerted an additive or synergistic antiviral activity. CONCLUSIONS: Different immunosuppressants have distinct effects on coronavirus replication, with 6-TG, MPA, tofacitinib and filgotinib possessing pan-coronavirus antiviral activity. The combinations of MPA, 6-TG, tofacitinib and filgotinib with antiviral drugs exerted an additive or synergistic antiviral activity. Thus, these findings provide an important reference for optimal management of immunocompromised patients infected with coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use
3.
Int J Infect Dis ; 132: 9-16, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2306168

ABSTRACT

OBJECTIVES: To examine the disparities between COVID-19 studies conducted in high-income countries (HICs) and low-and middle-income countries (LMICs). METHODS: We used the International Clinical Trials Registry Platform to identify COVID-19-related studies registered from December 31, 2019 to December 31, 2021. The World Bank definition was used to classify countries as high-, upper-middle-, lower-middle-, and low-income. The last three were considered to be LMICs. We examined the disparities in response speed, classification of medicines and vaccines, and registration and results reporting compliance between COVID-19 studies conducted in HICs and LMICs. RESULTS: We included 12,396 COVID-19 studies, with 6631 (53.5%) from HICs. HIC-registered studies reached a peak of 1039 in April 2020, whereas LMICs had only 440 studies. Of the 6969 interventional trials, those from HICs showed higher registration compliance (2199, 62.3% vs 1979, 57.6%, P <0.001) and results reporting compliance (hazard ratio 0.39, 95% confidence interval 0.28-0.55, P < 0.001) than LMICs. HICs also conducted significantly more small-molecule drug (956, 57.5% vs 868, 41.2%, P <0.001) and messenger RNA vaccine trials (135, 32.9% vs 19, 4.8%, P <0.001) than LMICs. CONCLUSION: HICs conducted COVID-19 trials with faster response speed and higher registration and publication compliance and produced more innovative pharmaceutical and vaccine products to combat COVID-19 than LMICs.


Subject(s)
COVID-19 , Developing Countries , Humans , COVID-19/epidemiology , Income , Poverty
4.
J Med Internet Res ; 25: e45051, 2023 04 14.
Article in English | MEDLINE | ID: covidwho-2305862

ABSTRACT

BACKGROUND: The COVID-19 vaccine is an effective tool in the fight against the COVID-19 outbreak. As the main channel of information dissemination in the context of the epidemic, social media influences public trust and acceptance of the vaccine. The rational application of health behavior theory is a guarantee of effective public health information dissemination. However, little is known about the application of health behavior theory in web-based COVID-19 vaccine messages, especially from Chinese social media posts. OBJECTIVE: This study aimed to understand the main topics and communication characteristics of hot papers related to COVID-19 vaccine on the WeChat platform and assess the health behavior theory application with the aid of health belief model (HBM). METHODS: A systematic search was conducted on the Chinese social media platform WeChat to identify COVID-19 vaccine-related papers. A coding scheme was established based on the HBM, and the sample was managed and coded using NVivo 12 (QSR International) to assess the application of health behavior theory. The main topics of the papers were extracted through the Latent Dirichlet Allocation algorithm. Finally, temporal analysis was used to explore trends in the evolution of themes and health belief structures in the papers. RESULTS: A total of 757 papers were analyzed. Almost all (671/757, 89%) of the papers did not have an original logo. By topic modeling, 5 topics were identified, which were vaccine development and effectiveness (267/757, 35%), disease infection and protection (197/757, 26%), vaccine safety and adverse reactions (52/757, 7%), vaccine access (136/757, 18%), and vaccination science popularization (105/757, 14%). All papers identified at least one structure in the extended HBM, but only 29 papers included all of the structures. Descriptions of solutions to obstacles (585/757, 77%) and benefit (468/757, 62%) were the most emphasized components in all samples. Relatively few elements of susceptibility (208/757, 27%) and the least were descriptions of severity (135/757, 18%). Heat map visualization revealed the change in health belief structure before and after vaccine entry into the market. CONCLUSIONS: To the best of our knowledge, this is the first study to assess the structural expression of health beliefs in information related to the COVID-19 vaccine on the WeChat public platform based on an HBM. The study also identified topics and communication characteristics before and after the market entry of vaccines. Our findings can inform customized education and communication strategies to promote vaccination not only in this pandemic but also in future pandemics.


Subject(s)
COVID-19 , Social Media , Humans , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Information Dissemination , Communication , Disease Outbreaks
5.
PLOS global public health ; 1(11), 2021.
Article in English | EuropePMC | ID: covidwho-2264673

ABSTRACT

For better preparing future epidemic/pandemic, important lessons can be learned from how different parts of China responded to the early COVID-19 epidemic. In this study, we comparatively analyzed the effectiveness and investigated the mechanistic insight of two highly representative cities of China in containing this epidemic by mathematical modeling. Epidemiological data of Wuhan and Wenzhou was collected from local health commission, media reports and scientific literature. We used a deterministic, compartmental SEIR model to simulate the epidemic. Specific control measures were integrated into the model, and the model was calibrated to the recorded number of hospitalized cases. In the epicenter Wuhan, the estimated number of unisolated or unidentified cases approached 5000 before the date of city closure. By implementing quarantine, a 40% reduction of within-population contact was achieved initially, and continuously increased up to 70%. The expansion of emergency units has finally reduced the mean duration from disease onset to hospital admission from 10 to 3.2 days. In contrast, Wenzhou is characterized as an emerging region with large number of primarily imported cases. Quick response effectively reduced the duration from onset to hospital admission from 20 to 6 days. This resulted in reduction of R values from initial 2.3 to 1.6, then to 1.1. A 40% reduction of contact through within-population quarantine further decreased R values until below 1 (0.5;95% CI: 0.4–0.65). Quarantine contributes to 37% and reduction of duration from onset to hospital admission accounts for 63% to the effectiveness in Wenzhou. In Wuhan, these two strategies contribute to 54% and 46%, respectively. Thus, control measures combining reduction of duration from disease onset to hospital admission and within-population quarantine are effective for both epicenters and settings primarily with imported cases.

6.
Sci Rep ; 13(1): 5474, 2023 04 04.
Article in English | MEDLINE | ID: covidwho-2288863

ABSTRACT

Treating severe COVID-19 patients and controlling the spread of SARS-CoV-2 are concurrently important in mitigating the pandemic. Classically, antiviral drugs are primarily developed for treating hospitalized COVID-19 patients with severe diseases to reduce morbidity and/or mortality, which have limited effects on limiting pandemic spread. In this study, we simulated the expanded applications of oral antiviral drugs such as molnupiravir to mitigate the pandemic by treating nonhospitalized COVID-19 cases. We developed a compartmental mathematical model to simulate the effects of molnupiravir treatment assuming various scenarios in the Omicron variant dominated settings in Denmark, the United Kingdom and Germany. We found that treating nonhospitalized cases can limit Omicron spread. This indirectly reduces the burden of hospitalization and patient death. The effectiveness of this approach depends on the intrinsic nature of the antiviral drug and the strategies of implementation. Hypothetically, if resuming pre-pandemic social contact pattern, extensive application of molnupiravir treatment would dramatically (but not completely) mitigate the COVID-19 burden, and thus there remains lifetime cost of living with the virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Antiviral Agents/therapeutic use
7.
Antiviral Res ; 211: 105555, 2023 03.
Article in English | MEDLINE | ID: covidwho-2242656

ABSTRACT

Nirmatrelvir is the main component of Paxlovid, an oral antiviral drug approved for the treatment of COVID-19 caused by SARS-COV-2 infection. Nirmatrelvir targets the main protease (Mpro), which is substantially conserved among different coronaviruses. Here, our molecular docking analysis indicates comparable affinity of nirmatrelvir binding to the Mpro enzymes of SARS-CoV-2 and three seasonal coronaviruses (OC43, 229E and NL63). However, in cell culture models, we found that nirmatrelvir potently inhibited SARS-CoV-2, OC43 and 229E, but not NL63. The insensitivity of NL63 to nirmatrelvir treatment was demonstrated at both viral replication and infectious titer levels. The antiviral activity of nirmatrelvir against OC43 and 229E was further confirmed in human airway organoids. The combination of nirmatrelvir and molnupiravir exerted differential patterns of antiviral response against OC43 and 229E. These results revealed disparities in the ability of nirmatrelvir to inhibit different coronaviruses, and caution against repurposing of nirmatrelvir as a pan-coronavirus treatment.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , SARS-CoV-2 , Molecular Docking Simulation
8.
J Med Virol ; 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2233227

ABSTRACT

SARS-CoV-2 NSP12, the viral RNA-dependent RNA polymerase (RdRp), is required for viral replication and is a therapeutic target to treat COVID-19. To facilitate research on SARS-CoV-2 NSP12 protein, we developed a rat monoclonal antibody (CM12.1) against the NSP12 N-terminus that can facilitate functional studies. Immunoblotting and immunofluorescence assay (IFA) confirmed the specific detection of NSP12 protein by this antibody for cells overexpressing the protein. Although NSP12 is generated from the ORF1ab polyprotein, IFA of human autopsy COVID-19 lung samples revealed NSP12 expression in only a small fraction of lung cells including goblet, club-like, vascular endothelial cells, and a range of immune cells, despite wide-spread tissue expression of spike protein antigen. Similar studies using in vitro infection also generated scant protein detection in cells with established virus replication. These results suggest that NSP12 may have diminished steady-state expression or extensive posttranslation modifications that limit antibody reactivity during SARS-CoV-2 replication.

9.
Cell Commun Signal ; 20(1): 201, 2022 12 27.
Article in English | MEDLINE | ID: covidwho-2196331

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 causes coronavirus disease 19 (COVID-19). The number of confirmed cases of COVID-19 is also rapidly increasing worldwide, posing a significant challenge to human safety. Asthma is a risk factor for COVID-19, but the underlying molecular mechanisms of the asthma-COVID-19 interaction remain unclear. METHODS: We used transcriptome analysis to discover molecular biomarkers common to asthma and COVID-19. Gene Expression Omnibus database RNA-seq datasets (GSE195599 and GSE196822) were used to identify differentially expressed genes (DEGs) in asthma and COVID-19 patients. After intersecting the differentially expressed mRNAs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to identify the common pathogenic molecular mechanism. Bioinformatic methods were used to construct protein-protein interaction (PPI) networks and identify key genes from the networks. An online database was used to predict interactions between transcription factors and key genes. The differentially expressed long noncoding RNAs (lncRNAs) in the GSE195599 and GSE196822 datasets were intersected to construct a competing endogenous RNA (ceRNA) regulatory network. Interaction networks were constructed for key genes with RNA-binding proteins (RBPs) and oxidative stress-related proteins. The diagnostic efficacy of key genes in COVID-19 was verified with the GSE171110 dataset. The differential expression of key genes in asthma was verified with the GSE69683 dataset. An asthma cell model was established with interleukins (IL-4, IL-13 and IL-17A) and transfected with siRNA-CXCR1. The role of CXCR1 in asthma development was preliminarily confirmed. RESULTS: By intersecting the differentially expressed genes for COVID-19 and asthma, 393 common DEGs were obtained. GO and KEGG enrichment analyses of the DEGs showed that they mainly affected inflammation-, cytokine- and immune-related functions and inflammation-related signaling pathways. By analyzing the PPI network, we obtained 10 key genes: TLR4, TLR2, MMP9, EGF, HCK, FCGR2A, SELP, NFKBIA, CXCR1, and SELL. By intersecting the differentially expressed lncRNAs for COVID-19 and asthma, 13 common differentially expressed lncRNAs were obtained. LncRNAs that regulated microRNAs (miRNAs) were mainly concentrated in intercellular signal transduction, apoptosis, immunity and other related functional pathways. The ceRNA network suggested that there were a variety of regulatory miRNAs and lncRNAs upstream of the key genes. The key genes could also bind a variety of RBPs and oxidative stress-related genes. The key genes also had good diagnostic value in the verification set. In the validation set, the expression of key genes was statistically significant in both the COVID-19 group and the asthma group compared with the healthy control group. CXCR1 expression was upregulated in asthma cell models, and interference with CXCR1 expression significantly reduced cell viability. CONCLUSIONS: Key genes may become diagnostic and predictive biomarkers of outcomes in COVID-19 and asthma. Video Abstract.


Subject(s)
Asthma , COVID-19 , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Gene Regulatory Networks , Transcriptome , COVID-19/genetics , MicroRNAs/genetics , Asthma/complications , Asthma/genetics , Computational Biology/methods
10.
PLOS Glob Public Health ; 1(11): e0000043, 2021.
Article in English | MEDLINE | ID: covidwho-2098666

ABSTRACT

For better preparing future epidemic/pandemic, important lessons can be learned from how different parts of China responded to the early COVID-19 epidemic. In this study, we comparatively analyzed the effectiveness and investigated the mechanistic insight of two highly representative cities of China in containing this epidemic by mathematical modeling. Epidemiological data of Wuhan and Wenzhou was collected from local health commission, media reports and scientific literature. We used a deterministic, compartmental SEIR model to simulate the epidemic. Specific control measures were integrated into the model, and the model was calibrated to the recorded number of hospitalized cases. In the epicenter Wuhan, the estimated number of unisolated or unidentified cases approached 5000 before the date of city closure. By implementing quarantine, a 40% reduction of within-population contact was achieved initially, and continuously increased up to 70%. The expansion of emergency units has finally reduced the mean duration from disease onset to hospital admission from 10 to 3.2 days. In contrast, Wenzhou is characterized as an emerging region with large number of primarily imported cases. Quick response effectively reduced the duration from onset to hospital admission from 20 to 6 days. This resulted in reduction of R values from initial 2.3 to 1.6, then to 1.1. A 40% reduction of contact through within-population quarantine further decreased R values until below 1 (0.5; 95% CI: 0.4-0.65). Quarantine contributes to 37% and reduction of duration from onset to hospital admission accounts for 63% to the effectiveness in Wenzhou. In Wuhan, these two strategies contribute to 54% and 46%, respectively. Thus, control measures combining reduction of duration from disease onset to hospital admission and within-population quarantine are effective for both epicenters and settings primarily with imported cases.

11.
International Journal of Contemporary Hospitality Management ; 34(10):3743-3763, 2022.
Article in English | CAB Abstracts | ID: covidwho-2034609

ABSTRACT

Purpose: The purpose of this study is to explore the three-way interaction effects among congruence type (proximal vs distal) of nonverbal ad messages, assessment perspective (internal vs external) of verbal ad messages and social distance (close vs faraway) on consumers' visit intention. Design/methodology/approach: After developing the four categories of restaurant advertisements and scenarios for each type of social distance, the authors used 780 observations collected from Chinese consumers via the online survey platform Sojump and WeChat. The authors conducted ANOVA to test the hypotheses. Findings: The results reveal that in proximal congruence situations, consumers who feel a close social distance between themselves and their companions report higher visit intentions when exposed to internal versus external perspective-oriented ad messages;in distal congruence situations, external perspective-oriented ad messages elicit higher intention to visit advertised restaurant when consumers feel a far social distance between themselves and their companions. Research limitations/implications: Future research can focus on the different categories of messages, such as functional and experiential messages, to find whether similar interaction effects are explored or not. Practical implications: This paper suggests some practical implications for advertisers to maximize the impact of advertisements on consumers' behavioral outcomes via combining the different characteristics of nonverbal and verbal messages effectively, especially according to their target consumers' characteristics. Originality/value: In the view of the three-way interaction effects, this paper offers a new lens on understanding how advertisements influence consumers' behavioral outcomes, which could contribute to the advancement of advertisement theories.

12.
EBioMedicine ; 81: 104132, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1996118

ABSTRACT

BACKGROUND: Human seasonal coronaviruses usually cause mild upper-respiratory tract infection, but severe complications can occur in specific populations. Research into seasonal coronaviruses is limited and robust experimental models are largely lacking. This study aims to establish human airway organoids (hAOs)-based systems for seasonal coronavirus infection and to demonstrate their applications in studying virus-host interactions and therapeutic development. METHODS: The infections of seasonal coronaviruses 229E, OC43 and NL63 in 3D cultured hAOs with undifferentiated or differentiated phenotypes were tested. The kinetics of virus replication and production was profiled at 33 °C and 37 °C. Genome-wide transcriptome analysis by RNA sequencing was performed in hAOs under various conditions. The antiviral activity of molnupiravir and remdesivir, two approved medications for treating COVID19, was tested. FINDINGS: HAOs efficiently support the replication and infectious virus production of seasonal coronaviruses 229E, OC43 and NL63. Interestingly, seasonal coronaviruses replicate much more efficiently at 33 °C compared to 37 °C, resulting in over 10-fold higher levels of viral replication. Genome-wide transcriptomic analyses revealed distinct patterns of infection-triggered host responses at 33 °C compared to 37 °C temperature. Treatment of molnupiravir and remdesivir dose-dependently inhibited the replication of 229E, OC43 and NL63 in hAOs. INTERPRETATION: HAOs are capable of modeling 229E, OC43 and NL63 infections. The intriguing finding that lower temperature resembling that in the upper respiratory tract favors viral replication may help to better understand the pathogenesis and transmissibility of seasonal coronaviruses. HAOs-based innovative models shall facilitate the research and therapeutic development against seasonal coronavirus infections. FUNDING: This research is supported by funding of a VIDI grant (No. 91719300) from the Netherlands Organization for Scientific Research and the Dutch Cancer Society Young Investigator Grant (10140) to Q.P., and the ZonMw COVID project (114025011) from the Netherlands Organization for Health Research and Development to R.R.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 229E, Human , Respiratory Tract Infections , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus 229E, Human/genetics , Humans , Organoids/pathology , Respiratory System/pathology , Respiratory Tract Infections/pathology , Seasons
13.
Front Psychol ; 13: 767295, 2022.
Article in English | MEDLINE | ID: covidwho-1952559

ABSTRACT

This study is based on the background of how artificial intelligence (AI) technology is applied to the field of creativity and design education to improve the design vision, teaching methods, and actual design productivity of practitioners. The purpose of the research is to compare traditional design education and new design education methods combined with AI technology. Taking the Technological Pedagogical Content Knowledge (TPACK) technology integration model as the starting point, a comprehensive evaluation is selected for different types of research to explore the animation design professional courses in design education, the content of students' perception preferences, and the evaluation of ease of learning so as to conduct research and analyze AI technology. Design new education strategies and practice methods under the background. In the research, a comparative experimental study was conducted on 40 first-year students majoring in animation design. The results show that through online design studio project practice, with personalized project learning guidance, the learning needs of students to show a better trend, and customized learning and project practice content can enhance the learning experience and performance of students. In the future, we can further expand the scope of analysis, include more case studies, and conduct more comprehensive research, including how to deal with the expansion of the platform for students' learning of design in situations similar to coronavirus disease 2019 (COVID-19) that profoundly affects our lives, and how the project is applied in practice.

14.
Smartmat ; 3(2):226-248, 2022.
Article in English | ProQuest Central | ID: covidwho-1905951

ABSTRACT

Due to the COVID‐19 pandemic, many rapid antimicrobial agents have developed intensively. Carbon dots (CDs), a new type of carbon‐based nanomaterials, shows great potential against emerging infectious diseases and antimicrobial‐resistant infections due to their unique optical properties, excellent biocompatibility, and easy surface modification. With the definition of the CDs structure and properties, synthesis, and characteristic technology improvement, the research on the CDs as antimicrobial agents has made significant progress. However, the lack of high repeatable and exact preparation methods, and the regular antimicrobial activity make it far from practical application. In this review, we summarize the most recent progress and challenges of CDs antimicrobial. First, an overview of the characteristics and properties is given, and the advantage of CDs applied to antimicrobial is further discussed. Then, it focuses on research progress on antimicrobial mechanisms under different conditions, the critical factors affecting their antimicrobial activity, and the practical antimicrobial applications. Finally, the main challenges and future research perspectives of antimicrobial CDs are proposed.

15.
Transplantation ; 106(10): 2068-2075, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1909080

ABSTRACT

BACKGROUND: The rapid development and universal access to vaccines represent a milestone in combating the coronavirus disease 2019 (COVID-19) pandemic. However, there are major concerns about vaccine response in immunocompromised populations in particular transplant recipients. In the present study, we aim to comprehensively assess the humoral response to COVID-19 vaccination in both orthotopic organ transplant and allogeneic hematopoietic stem cell transplant recipients. METHODS: We performed a systematic review and meta-analysis of 96 studies that met inclusion criteria. RESULTS: The pooled rates of seroconversion were 49% (95% confidence interval [CI], 43%-55%) in transplant recipients and 99% (95% CI, 99%-99%) in healthy controls after the second dose of vaccine. The pooled rate was 56% (95% CI, 49%-63%) in transplant recipients after the third dose. Immunosuppressive medication is the most prominent risk factor associated with seroconversion failure, but different immunosuppressive regimens are associated with differential outcomes in this respect. Calcineurin inhibitors, steroids, or mycophenolate mofetil/mycophenolic acid are associated with an increased risk of seroconversion failure, whereas azathioprine or mammalian target of rapamycin inhibitors do not. Advanced age, short interval from receiving the vaccine to the time of transplantation, or comorbidities confers a higher risk for seroconversion failure. CONCLUSIONS: Transplant recipients compared with the general population have much lower rates of seroconversion upon receiving COVID-19 vaccines. Immunosuppressants are the most prominent factors associated with seroconversion, although different types may have differential effects.


Subject(s)
COVID-19 Vaccines , COVID-19 , Transplant Recipients , Antibodies, Viral , Azathioprine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Calcineurin Inhibitors/therapeutic use , Humans , Immunosuppressive Agents/adverse effects , Mycophenolic Acid/adverse effects , TOR Serine-Threonine Kinases
16.
Atmospheric Chemistry and Physics ; 22(9):6291-6308, 2022.
Article in English | ProQuest Central | ID: covidwho-1842977

ABSTRACT

The Chinese government recently proposed ammonia (NH3) emission reductions (but without a specific national target) as a strategic option to mitigate fine particulate matter (PM2.5) pollution. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas (SO2 and NOx) emissions. We found that PM2.5 concentrations decreased from 2000 to 2019, but annual mean PM2.5 concentrations still exceeded 35 µg m-3 at 74 % of 1498 monitoring sites during 2015–2019. The concentration of PM2.5 and its components were significantly higher (16 %–195 %) on hazy days than on non-hazy days. Compared with mean values of other components, this difference was more significant for the secondary inorganic ions SO42-, NO3-, and NH4+ (average increase 98 %). While sulfate concentrations significantly decreased over this period, no significant change was observed for nitrate and ammonium concentrations. Model simulations indicate that the effectiveness of a 50 % NH3 emission reduction for controlling secondary inorganic aerosol (SIA) concentrations decreased from 2010 to 2017 in four megacity clusters of eastern China, simulated for the month of January under fixed meteorological conditions (2010). Although the effectiveness further declined in 2020 for simulations including the natural experiment of substantial reductions in acid gas emissions during the COVID-19 pandemic, the resulting reductions in SIA concentrations were on average 20.8 % lower than those in 2017. In addition, the reduction in SIA concentrations in 2017 was greater for 50 % acid gas reductions than for the 50 % NH3 emission reductions. Our findings indicate that persistent secondary inorganic aerosol pollution in China is limited by emissions of acid gases, while an additional control of NH3 emissions would become more important as reductions of SO2 and NOx emissions progress.

17.
Nature ; 605(7908): 146-151, 2022 05.
Article in English | MEDLINE | ID: covidwho-1815561

ABSTRACT

Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D-PGD2/PTGDR pathway is a useful target for therapeutic interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Eicosanoids , Leukocytes, Mononuclear , Mice , Organic Chemicals , Oxazoles , Piperazines , Polyesters , Prostaglandins , Spike Glycoprotein, Coronavirus , Sulfonamides
18.
Cell Rep ; 39(5): 110786, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1797092

ABSTRACT

SARS-CoV-2 continues to evolve into variants of concern (VOC), with greatest variability in the multidomain, entry-facilitating spike proteins. To recognize the significance of adaptive spike protein changes, we compare variant SARS-CoV-2 virus particles in several assays reflecting authentic virus-cell entry. Virus particles with adaptive changes in spike amino-terminal domains (NTDs) are hypersensitive to proteolytic activation of membrane fusion, an essential step in virus-cell entry. Proteolysis is within fusion domains (FDs), at sites over 10 nm from the VOC-specific NTD changes, indicating allosteric inter-domain control of fusion activation. In addition, NTD-specific antibodies block FD cleavage, membrane fusion, and virus-cell entry, suggesting restriction of inter-domain communication as a neutralization mechanism. Finally, using structure-guided mutagenesis, we identify an inter-monomer ß sheet structure that facilitates NTD-to-FD transmissions and subsequent fusion activation. This NTD-to-FD axis that sensitizes viruses to infection and to NTD-specific antibody neutralization provides new context for understanding selective forces driving SARS-CoV-2 evolution.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Communication , Humans , Peptide Hydrolases , SARS-CoV-2 , Virus Internalization
19.
Future Med Chem ; 14(10): 685-699, 2022 05.
Article in English | MEDLINE | ID: covidwho-1780171

ABSTRACT

Background: In the last two decades, the world has witnessed the emergence of zoonotic corona viruses (CoVs), which cause mild to severe respiratory diseases in humans. Human coronaviruses (HCoVs), mainly from the alpha-CoV and beta-CoV genera, have evolved to be highly pathogenic, such as SARS-CoV-2 causing the COVID-19 pandemic. These coronaviruses carry functional enzymes necessary for the virus life cycle, which represent attractive antiviral targets. Methods & Results: We aimed to therapeutically target the main protease (Mpro) of HCoV-NL63 and HCoV-229E (from alpha-CoV genus) and HCoV-OC43 and SARS-CoV-2 (from beta-CoV genus). Through virtual screening, we identified an FDA-approved drug dyphylline, a xanthine derivate, that binds to the catalytic dyad residues; histidine and cystine of the Mpro structures. Importantly, dyphylline dose-dependently inhibited the viral replication in cell culture models infected with the viruses. Conclusion: Our findings support the repurposing of dyphylline as a pan-coronavirus antiviral agent.


Subject(s)
COVID-19 Drug Treatment , Dyphylline , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Repositioning , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL